Computing Centre, University of Nottingham, for computing facilities.

References

Speakman, J. C. (1967). Chem. Commun. p. 32. Wallwork, S. C. (1962). Acta Cryst. 15, 758.

Williams, J. M. (1969). Nat. Bur. Stand. Special Publ. No. 301, 237.
Williams, J. M. \& Peterson, S. W. (1971). Spectroscopy in Inorganic Chemistry Vol. 2, pp. 1-56, Edited by C. N. R. Rao \& J. R. Ferraro. New York \& London: Acaddemic Press.

Acta Cryst. (1972). B28, 2303

Crystal structure of tetramethylammonium cadmium chloride.* By. B. Morosin, Sandia Laboratories, Albuquerque, New Mexico 87115, U.S.A.

(Received 21 July 1971)
The crystal structure of tetramethylammonium cadmium chloride, $\left(\mathrm{CH}_{3}\right)_{4} \mathrm{NCdCl}_{3}$, has been refined using the full-matrix least-squares method on 506 Mo $K \alpha$ intensity data. The compound crystallizes in space group $P 6_{3} / m$ with lattice constants $a_{0}=9.138$ and $c_{0}=6.723 \AA$ and a structure consisting of infinite linear chains formed from face-shared cadmium-chloride ion octahedra ($\mathrm{Cd}-\mathrm{Cl}$ separation of $2.641 \AA$ and $\mathrm{Cl}-\mathrm{Cd}-\mathrm{Cl}$ angle of 96.05° along the chain) and of disordered $\left[\mathrm{N}\left(\mathrm{CH}_{3}\right)_{4}\right]^{+}$ions.

Introduction

Recent low-temperature neutron scattering experiments on tetramethylammonium manganese chloride (TMMC) have shown that the $-\mathrm{MnCl}_{3}^{-}$- chains magnetically order at low temperature (Birgeneau, 1971). Attempts to grow a dimagnetic isomorphic analog as a host for resonance studies proved successful for only cadmium ions. The crystal structure of tetramethylammonium cadmium chloride (TMCC) proved to be very similar to that for TMMC (Morosin \& Graeber, 1967) even to the extent of disorder of the $\left[\mathrm{N}\left(\mathrm{CH}_{3}\right)_{4}\right]^{+}$ions.

Experimental

Colorless, hexagonal prismatic $\{10 \overline{1} 0\}$ crystals of TMCC were grown either by cooling hot aqueous saturated solutions, prepared with stoichiometric amounts of $\mathrm{N}\left(\mathrm{CH}_{3}\right)_{4} \mathrm{Cl}$ and CdCl_{2}, or by slow evaporation of similar room-temperature solutions.
The lattice constants for TMCC $\left[a_{0}=9.138(1), c_{0}=\right.$ 6.723 (1) \AA] were obtained by least-squares fit of 12 high 2θ values measured on films taken with $\mathrm{Cu} K \alpha$ radiation (λ for $K \alpha_{1}=1 \cdot 54050 \AA$) using a 115 mm diameter Straumanis loaded, Weissenberg camera. Systematic absences of $00 l$ for l odd and the symmetry of the reciprocal lattice as recorded by the precession method indicate the space group to be either $P 6_{3}$ or $P 6_{3} / \mathrm{m}$. Comparison of these photographs with those previously taken on TMMC indicated that these compounds are isomorphous. Similarly, the presence of a piezoelectric effect was not detected. There are two formula weights of $\mathrm{N}\left(\mathrm{CH}_{3}\right)_{4} \mathrm{CdCl}_{3}$ per cell, yielding a calculated density of $2.07 \mathrm{~g} . \mathrm{cm}^{-3}$.

The $\theta-2 \theta$ scan technique and a scintillation counter with pulse-height discrimination were used to measure the Mo $K \alpha$ intensity data on a crystal specimen mounted on [11200]. (A Datex automatic-control module was used for setting the angles on the Picker diffractometer and on the

* This work was supported by the U.S. Atomic Energy Commission.
$\mathrm{E} \& \mathrm{~A}$ full-circle orienter.) Two symmetry-related sets $\mathrm{fc} \mathbf{r}$ both positive and negative values of l were examined for differences that might imply the structure was noncentrosymmetric, or possibly that it consisted of an intimate twinning of two noncentrosymmetric structures (see TMMC). The number of pairs of reflections with the same sign for l which differed by more than 3σ (obtained from counting statistics)* was 64; however, only in five cases did the average value of the positive l differ from that for the negative l by 3σ. On the basis of this comparison of intensities, the presence or absence of the center of symmetry cannot be clearly established. Two data sets were considered for refinement: (1) 506 averaged intensities $\left(P 6_{3} / \mathrm{m}\right)$ of which 116 were measured to be less than 3σ and, thus, considered to be unobserved, \dagger and (2) 941 intensities with both positive and negative l index, of which 117 were correspondingly considered to be unobserved. No absorption corrections were applied to the data set ($\mu \mathrm{Mo} K \alpha=29.5 \mathrm{~cm}^{-1}$: crystal, hexagonal prism $0.19 \times 0.17 \times 0.18 \mathrm{~mm}$).

Refinement and results

Using the positional parameters determined for TMMC, the above data sets were subjected to full-matrix leastsquares refinement using anisotropic thermal parameters. The function, $\sum w\left(F_{o}-F_{c}\right)^{2}$, was minimized; weights were assigned from counting statistics or set to zero for unobserved reflections when $F_{o}<F_{c}$. Structure factors were calculated with $\mathrm{Cd}, \mathrm{Cl}^{-}, \mathrm{N}$, and C scattering factors from

[^0]Tables 3.3.1 A and 3.3.1 B, and dispersion corrections from Table 3.3.2C of International Tables for X-ray Crystallography (1962). The residual, $R=\sum| | F_{o}\left|-\left|F_{c}\right|\right| / \sum\left|F_{o}\right|$, are 0.031 and 0.029 for the $P 6_{3} / m$ and $P 6_{3}$ data sets, respectively.

If the carbon atoms are not included in the refinement, R is 0.052 . A three-dimensional difference synthesis shows the density corresponding to the carbon atoms to be smeared as three arcs (or semicircles), with ends attached to the threefold axis and with density continuously varying from this widely spread minimum value at the threefold to a smaller cross section maximum value ($\sim 3 \times$ minimum) at the mirror. The carbon thermal parameters attempt to reflect this smeared shape, i.e. thin pancake for C(1) compared to egg shape for $C(2)$. Clearly, the tetramethylammonium ions are disordered in the structure. If this Fourier synthesis is ignored and the separate refinements of
the two data sets are compared on the basis of the R factor ratio (Hamilton, 1965), the hypothesis that the structure is acentric cannot be rejected. The only significant positional parameter (change greater than 3σ) involves the nitrogen z parameter $[z=0.275$ (2) or -0.272 (2) with identical R values for the two absolute configurations]; however, because of the high-correlation interaction of this z parameter with U_{33}, whose value drops to $0.006(7) \AA^{2}$, such a difference is highly suspect. (Because of thermal motion, the mean displacement in position of the nitrogen in the centric case is sufficiently large to be indistinguishable with the displacement of $0.17 \AA$ and the low U_{33} value as is obtained in the $P 6_{3}$ refinement.)

The above results suggest that the centrosymmetric space group probably is the preferred one and that the $\left[\mathrm{N}\left(\mathrm{CH}_{3}\right)_{4}\right]^{+}$ions are disordered. The positional and thermal

Table 1. Atomic positional and anisotropic thermal parameters $\left(\times 10^{4}\right)$ for TMCC
Thermal parameters are of the form: $\exp \left(-2 \pi^{2} \sum \sum U_{i j} h_{i} h_{j} a_{i}{ }^{*} a_{j}{ }^{*}\right)$; symmetry requires that $U_{11}=U_{22}=2 U_{12}$ for Mn, N, and $\mathrm{C}(1)$ and that $U_{13}=U_{23}=0.0$ for all except $C(2)$.

	x	y	z	U_{11}	U_{22}	U_{33}	U_{12}	U_{13}	U_{23}
Cd	0	0	0	398 (3)		195 (3)			
Cl	1552 (2)	2560 (2)	\%*	459 (8)	319 (7)	306 (6)	130 (6)		
N	${ }^{2}$	${ }_{3}{ }^{*}$	$\frac{1}{4}$ *	320 (20)		390 (50)			
C(1)	${ }^{\frac{2}{3}}$	$\frac{1}{3}$ *	4500 (40)	5600 (900)		130 (90)			
C(2)	6260 (20)	4680 (20)	2080	1100 (100)	1200 (100)	3200 (400)	800 (100)	300 (200)	1400 (200)

Table 2. Observed and calculated structure factors for TMCC

* Unobserved reflections; F_{o} and F_{c} both $\times 10$.

	211	213		14.	-8	8.3 .4		
7	75	65		214.	215			
	0.3 .1		3	${ }_{145}^{210}$	$\stackrel{2}{169}$	0	${ }^{124} 3$.	119
	6.3.L		4	35.	-2	2	128	124
0	2 am	293	6		135	3	$3{ }^{3}$	-6
1	$36 *$	-38				4	97	92
2	142	151		7.3.1				
3	$30 \cdot$	31				8.40 L		
4	220	215	0	247	268			
5	40.	-23	1	49*	49	0	76	65
6	106	101	2	90	82	1	44^{4}	-30
			3	$4{ }^{4 *}$	-39	2	124	123
	6,4,L		4	202	$\begin{aligned} & 196 \\ & 32 \end{aligned}$	9,0.L		
0	303	310						
1	$0 \cdot$	-8		7,4.0			141	149
2	42°	42				1	169	58
3	$0 \cdot$	2	0	208	214	2	168	166
4	241	240	1	$20 *$	-4	3	60	-54
5	12•	-5	2	${ }^{55}{ }^{\circ}$	51	4	$\begin{gathered} 126 \\ 55 \end{gathered}$	120 37
	6.5.L		4	173	170		9.1.L	
0	198	203		7.5.L				
1	25.	2				0	70	72
2	74	67	0	60*	79	1	76	17
3	$33 *$	-4	1	$0 \cdot$	${ }^{6}$	2	182	189
4	165	159	2	$\begin{gathered} 123 \\ 65 \end{gathered}$	119 -2	3	$\begin{aligned} & 75 \\ & 71 \end{aligned}$	-67
6.6.L								
				8.0 .1		9,2.L		
0	${ }_{49}^{95}$	${ }_{31}^{88}$	0		305	0	79	72
2	118	111	1	$17 *$	1	1	49*	35
3	$53 \cdot$	-28	2	121	119		146	144
			3	26*	1	3		-32
	$7 \cdot 0 \cdot \mathrm{~L}$		4	235	243	9.3.2		
			5	28.	-1			
0	337	348	6	93	83			
$\frac{1}{2}$	${ }_{206}^{200}$	209		8.1 .1		0	520.	- 71
	340	33				2	111	101
5	264	265	0	139	142	10.0.L		
5	46°	-29	1	94	93			
\bigcirc	139	135	2	219	218			
7	21°	19	4	${ }^{84}$	-76	0	${ }_{37} 0$.	62 -2
	7.1.1		5	65	59	2	104	106
			6	144	135		$12 \bullet$	-
0	240	247				4	68	53
1	95	-93		8.2 .1		10.1.L		
2	227	237						
3	82	75	0	130	132			
4	184	183	1	102	100	0		109
5	66	-5s	3	91	-86	1	40°	10
6	155	151	2	172	169	2		83
			4	111	105	3		-6
	7.2.1		5	63	62			
		178				$11.0 . \mathrm{L}$		
						$\begin{array}{lll} 0 & 102 & 102 \\ 1 & 390 & -32 \end{array}$		

Fig. 1. A representation of the crystal structure of TMCC viewed along the c axis. Chains formed by face-sharing of octahedrally coordinated cadmium-chloride ion, $-\mathrm{Cd}-\mathrm{Cl}_{3}-\mathrm{Cd}$-, are parallel to the 6_{3} axis at the origin; [$\left.\mathrm{N}\left(\mathrm{CH}_{3}\right)^{4}\right]^{+}$ions are located between these chains in a disordered manner.
parameters for this case are given in Table 1. The observed and calculated structure factors obtained with these parameters are given in Table 2. The crystal structure of TMCC as viewed along the c axis is represented in Fig. 1.

The slight trigonal elongation (Table 3) of the octahedron about the cadmium ion is very similar to that observed in TMMC (84.09 and 95.91°). The longer $\mathrm{Cd}-\mathrm{Cl}$ separation compared with $\mathrm{Mn}-\mathrm{Cl}(2 \cdot 560 \AA)$ results in a slight elongation of the cell dimension along the c axis; this increased separation between the chloride ions along the chain allows the $\left[\mathrm{N}\left(\mathrm{CH}_{3}\right)_{4}\right]^{+}$ions to fit closer to the chains, resulting in a slightly smaller a axis (for TMMC, $a_{0}=9 \cdot 1510$ and $c_{0}=6 \cdot 4940 \AA$). Even though an improvement would be

Table 3. Interatomic separations and angles in TMCC
(a) Involving chemically bonded atoms (for labeling, see Fig. 1):

$\mathrm{Cd}-\mathrm{Cl}(1)$	$2.644(1) \AA$	$\mathrm{Cl}(1)-\mathrm{Cd}-\mathrm{Cl}(2)$	$83.91(3)^{\circ}$
$\mathrm{N}-\mathrm{C}(1)$	$1.34(3)$	$\mathrm{Cl}(1)-\mathrm{Cd}-\mathrm{Cl}(3)$	$96.09(3)$
$\mathrm{N}-\mathrm{C}(2)$	$1.47(3)$	$\mathrm{C}(1)-\mathrm{N}-\mathrm{C}(2)$	$101(2)$
		$\mathrm{C}(2)-\mathrm{N}-\mathrm{C}(3)$	$116(1)$

(b) Involving near-neighbor contact separations within chain and $\left[\mathrm{N}\left(\mathrm{CH}_{3}\right)_{4}\right]^{+}$ion:
$\mathrm{Cl}(1)-\mathrm{Cl}(2)$
3.535 (2)
3.933 (1)
$\mathrm{C}(1)-\mathrm{C}(2)$
$2 \cdot 17$ (4) \AA
$\mathrm{Cl}(1)-\mathrm{Cl}(3) \quad 3.933$ (1)
$\mathrm{C}(2)-\mathrm{C}(3)$
$2 \cdot 50$ (2)
(c) Involving near-neighbor contact separation between chain and/or $\left[\mathrm{N}\left(\mathrm{CH}_{3}\right)_{4}\right]^{+}$ions:

$\mathrm{Cl}(2)-\mathrm{C}(3)$	$3 \cdot 54(2) \AA$	$\mathrm{C}(1)-\mathrm{C}(4)$	$4 \cdot 28(3) \AA$
$\mathrm{Cl}(1)-\mathrm{C}(2)$	$3.74(2)$	$\mathrm{C}(2)-\mathrm{C}(4)$	$4.28(5)$
$\mathrm{Cl}(1)-\mathrm{Cl}(4)$	$3.84(4)$		

$\mathrm{Cl}(1)-\mathrm{Cl}(4) \quad 3.84$ (4)
$\mathrm{Cl}(1)-\mathrm{C}(5) \quad 3.83$ (2)
obtained for comparison of the carbon-carbon bond lengths with standard accepted values, those listed in Table 3 were not corrected for 'in phase' motion (Busing \& Levy, 1964), because it is felt that the approximation of the model used (statistically disordered $\left[\mathrm{N}\left(\mathrm{CH}_{3}\right)_{4}\right]^{+}$ions with atoms undergoing anisotropic harmonic thermal motion) is inadequate to describe the smeared electron density map mentioned above.

The assistance of R. A. Trudo is gratefully acknowledged.

References

Birgeneau, R. J. (1971). Bull. Amer. Phys. Soc. 16, 302. Busing, W. R. \& Levy, A. A. (1964). Acta Cryst. 17, 1420. Hamilton, W. C. (1965). Acta Cryst. 18, 502.
International Tables for X-ray Crystallography (1962). Vol.
III, Birmingham: Kynoch Press.
Morosin, B. \& Graeber, E. J. (1967). Acta Cryst. 23, 766.

Book Reviews

Works intended for notice in this column should be sent direct to the Book-Review Editor (M. M. Woolfson, Physics Department, University of York, Heslington, York YO1 5DD, England). As far as practicable books will be reviewed in a country different from that of publication.

Molecular structures and dimensions. Vol. 1. Bibliography 1935-69. General organic crystal structures. Edited by Olga Kennard and David G. Watson. Pp. xxiii +413 . Utrecht: Oosthoek's, 1970. Price $f 32(\$ 10, £ 3 \cdot 90)$, library copy: $f 45(\$ 14, £ 5 \cdot 40)$.

Molecular structures and dimensions. Vol. 2. Bibliography 1935-69. Complexes and organometallic structures. Edited by Olga Kennard and David G. Watson. Pp. xxiii +364 . Utrecht: Oosthoek's, 1970. Price $f 27$ ($\$ 8.50, £ 3 \cdot 30$), library copy: $f 35$ (\$11, £4•30).

These two volumes are precisely what their titles claim, a list of titles and authors of some 4000 crystal structures
published between 1935 and 1 January 1969, together with some 500 of the structure analyses published during 1969. The bibliography refers to carbon-containing compounds, but omits what the authors describe as 'purely inorganic substances such as inorganic carbides, carbonyls, carbonates, cyanides and thiocyanates'. The omission of cyanides and thiocyanates is inconvenient but the omission of metal carbonyls I find quite extraordinary.
The criteria of a good bibliography must be its comprehensiveness within its declared criteria, its ease of use and its accuracy. On the first of these counts I must compliment the authors on their work. In some six months of use I have been able to fault the bibliography only once and that with a paper of obscure title in an obscure journal. Unfortunately the editors decided to have an indefinite termination date for the present section and I hope that the

[^0]: * In the expression for $\sigma\left[\sigma=\left(N_{S C}+K^{2} N_{B}\right)^{1 / 2}\right.$, where $N_{S C}$, N_{B}, an $\mathrm{d} K$ are the total scan count, background counts, and the ratio of the scan to background times, respectively], K rather than K^{2} was employed; further, no allowances for instability or other errors, which would be a function of intensity, were made.
 \dagger Only one particular measured value of a set needed to be less than 3σ for the intensity to be considered unobserved. For unobserved reflections with positive average values, $I_{\text {obs }}$ set equal to the greater of either the average value or $3 \sigma_{(a v e)} / / / n$, where $\sigma_{(\mathrm{ave})}$ is the average σ for n measurements; for negative average values, I_{obs} set to zero. Weights $=n / \sigma^{2}$ (ave).

